代码随想录
代码随想录 系统刷题, 总结的很棒 5
数组
力扣 no.704\ 二分查找
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1;
while(left <= right){
int mid = (right - left) / 2 + left;
int num = nums[mid];
if (num == target) {
return mid;
} else if (num > target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return -1;
}
};
- 前提为有序无重复
- 循环不变量规则
- 区间的定义为两种, 左闭右闭或左闭右开
- 左闭右闭, while 使用 <=, if (nums [middle]>target) right 赋值为 middle-1
- 左闭右开, while 使用 <, if (nums [middle]>target) right 赋值为 middle
力扣 no.27\ 移除元素
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
if (val != nums[fastIndex]) {
nums[slowIndex++] = nums[fastIndex];
}
}
return slowIndex;
}
};
- 双指针法
- 快指针寻找新数组的元素, 慢指针指向更新新数组下标的位置
- 另有暴力解法
力扣 no.977\ 有序数组的平方
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
int k = A.size() - 1;
vector<int> result(A.size(), 0);
for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
if (A[i] * A[i] < A[j] * A[j]) {
result[k--] = A[j] * A[j];
j--;
}
else {
result[k--] = A[i] * A[i];
i++;
}
}
return result;
}
};
- 双指针法, 一开始我以为要合并相等项呢 (其实也差不多)
- 另有暴力解法
力扣 no.209\ 长度最小的子数组
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
while (sum >= s) {
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength;
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
- 滑动窗口法
- 另有暴力解法
力扣 no.59\ 螺旋矩阵 II
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如 :n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j; j < n - offset; j++) {
res[i][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如 :第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};
- 模拟, 坚持循环不变量原则, 左闭右开
卡码网 no.58\ 区间和
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, a, b;
cin >> n;
vector<int> vec(n);
for (int i = 0; i < n; i++) cin >> vec[i];
while (cin >> a >> b) {
int sum = 0;
// 累加区间 a 到 b 的和
for (int i = a; i <= b; i++) sum += vec[i];
cout << sum << endl;
}
}
- 前缀和
卡码网 no.44 开发商购买土地 n*m 个区块拥有权值, 所有区块分配给 A 和 B 只允许将区域按横向或纵向划分成两个子区域, 求 A 和 B 的最小权值之差
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main () {
int n, m;
cin >> n >> m;
int sum = 0;
vector<vector<int>> vec(n, vector<int>(m, 0)) ;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> vec[i][j];
sum += vec[i][j];
}
}
int result = INT_MAX;
int count = 0; // 统计遍历过的行
for (int i = 0; i < n; i++) {
for (int j = 0 ; j < m; j++) {
count += vec[i][j];
// 遍历到行末尾时候开始统计
if (j == m - 1) result = min (result, abs(sum - count - count));
}
}
count = 0; // 统计遍历过的列
for (int j = 0; j < m; j++) {
for (int i = 0 ; i < n; i++) {
count += vec[i][j];
// 遍历到列末尾的时候开始统计
if (i == n - 1) result = min (result, abs(sum - count - count));
}
}
cout << result << endl;
}
- 官方题解有点小问题......
- 求前缀和的过程中可解